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Abstract
During the twentieth century, there has been a lot published about the 

reliability of the multiple-choice tests for subject evaluation. Specifically, there 
are many theoretical and empirical studies that compare the different scoring 
methods applied in tests. In this study, a novel algorithm was designed to generate 
hypothetical examinees with three specific characteristics: real knowledge, level 
of cautiousness and erroneous knowledge. The first characteristic established 
the probability of a student to knowing the veracity or falsity of each choice 
in a multiple-choice test. The level of cautiousness showed the probability of 
answering a question not known by guessing. Finally, erroneous knowledge 
was false knowledge assimilated as being true. The test setup required by the 
algorithm included the test length, choices per question and the scoring system. 
The algorithm sent tests to these hypothetical examinees analyzing the deviation 
between the real knowledge and the estimated knowledge (the test score reached). 
The most popular test scoring methods (positive marking, negative marking, 
free-choice tests and the dual response method) were analyzed and compared 
to measure their reliability. To validate the algorithm, this was compared with an 
analytical probabilistic model. This study verified that the presence of erroneous 
knowledge or lack there of generates an important alteration in the reliability of 
the most accepted scoring methods in the educational community (the negative 
marking method). Given the impossibility of ascertaining the existence of 
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erroneous knowledge in the examinees using a test, it is up to the examiner 
whether or not to penalize the presence of such knowledge with the use of 
negative marking or to find a closer estimation of the real knowledge using the 
positive marking method.

Keywords: Multiple Choice Test, Computer Simulation, Scoring, Evaluation, 
Monte Carlo Method.

Resumen
Durante gran parte del siglo XX se ha escrito mucho sobre la fiabilidad 

de los test multirrespuesta como método para la evaluación de contenidos. En 
concreto son muchos los estudios teóricos y empíricos que buscan enfrentar los 
distintos sistemas de puntuación existentes. En esta investigación se ha diseñado 
un algoritmo que genera estudiantes virtuales con los siguientes atributos: 
conocimiento real, nivel de cautela y conocimiento erróneo. El primer parámetro 
establece la probabilidad que tiene el alumno de conocer la veracidad o falsedad 
de cada opción de respuesta del test. El nivel de cautela refleja la probabilidad de 
responder a una cuestión desconocida. Finalmente, el conocimiento erróneo es 
aquel conocimiento falsamente asimilado como cierto. El algoritmo también tiene 
en cuenta parámetros de configuración del test como el número de preguntas, 
el número de opciones de respuesta por pregunta y el sistema de puntuación 
establecido. El algoritmo lanza test a los individuos virtuales analizando la 
desviación generada entre el conocimiento real y el conocimiento estimado (la 
puntuación alcanzada en el test). En este estudio se confrontaron los sistemas de 
puntuación más comúnmente utilizados (marcado positivo, marcado negativo, 
test de elección libre y método de la respuesta doble) para comprobar la 
fiabilidad de cada uno de ellos. Para la validación del algoritmo, se comparó con 
un modelo analítico probabilístico. De los resultados obtenidos, se observó que 
la existencia o no de conocimiento erróneo generaba una importante alteración 
en la fiabilidad de los test más aceptados por la comunidad educativa (los test 
de marcado negativo). Ante la imposibilidad de comprobar la existencia de 
conocimiento erróneo en los individuos a través de un test, es decisión del 
evaluador castigar su presencia con el uso del marcado negativo, o buscar una 
estimación más real del conocimiento real a través del marcado positivo.

Palabras clave: Test Multirrespuesta, Simulación Computacional, Puntuación, 
Evaluación, Método de Monte Carlo.
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Introduction

Multiple-choice tests have been widely applied in the majority of stages 
of the educational system in many countries. Even the certification 
of competencies or skills in many areas of the industrial or medical 
sectors are often based on this method of evaluation. They provide an 
interesting tool when a high number of examinees must be evaluated. 
The reliability of the method for grading is crucial when there is a 
passing mark which defines the pass/fail threshold in the examinee 
certification or graduation. This has been the prime motivation for 
research publications and investigation related to multiple-choice tests. 
(Papenberg, Diedenhofen, and Musch 2019; Parkes and Zimmaro 2016). 
In these methods of evaluation, an assertion, also called the stem of 
the question, is introduced and the examinee has to choose one of a 
selection of multiple answers, where one of them is the key, the correct 
option, and the others are distractors, the wrong answers. An important 
point in any research about the reliability of the multiple-choice tests is 
that distractors have to be well-designed (Burton 2005; Hsu et al. 2018). 
It means that the falsity of the distractor should be only clear to an 
examinee who knows the evaluated subject in that question.

Beyond this typological classification, there is a wide list of alternatives 
to mark or evaluate the tests after they are filled in by the examinees. 
The simplest way is the ‘Number Right’ method (Kurz 1999) where the 
selection of a correct answer (the key answer) is registered and marked 
with a positive value, and the selection of any distractor or unanswered 
questions implies no score for that question. The main problem of this 
scoring method is the deviation generated between the real knowledge 
and the estimated knowledge of the examinees due to guessing. The 
student, after having marked the questions that he/she knows, tends 
to guess the remaining questions, since the selection of distractors 
does not imply any penalization or negative score (Lin 2018). A way to 
reduce the bias in the real knowledge versus the estimated knowledge 
generated by this evaluation method was achieved with the ‘Negative 
Marking’ method. In this scoring system, the selection of any distractor 
is scored with a negative mark, so any mistakes are penalized, and the 
examinees are dissuaded from guessing. However, there is another 
motivation for selecting the distractors: erroneous knowledge (Burton 
2004). This is false knowledge assimilated as true by the examinee. Thus, 
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the incorrectly selected answers would come from a combination of this 
erroneous knowledge and guessing, concluding that Negative Marking 
penalizes both behaviors equally. It is not possible to quantify or discern 
the relative weight of each one in the final score of the test. Considering 
that the essence of the Negative Marking is based on the elimination of 
guessing by means of a penalty gauged to reduce its influence in the final 
score, the presence of erroneous knowledge would reduce and hide the 
real knowledge of the examinee. Therefore, estimated knowledge could 
be lower than real knowledge.

The specific value of the scoring penalty that should be imposed for 
each distractor selection in the Negative Marking method is generally 
established using the probability theory to reach the null expected value 
by guessing (Warwick, Bush, and Jennings 2010). The calculation of this 
sanction values is based on the equation (1):

	 (1)

where p is the value of the penalty and k the number of answers per 
question.

A new concept, ‘partial knowledge’ (Slepkov and Godfrey 2019), leads 
to an interesting matter that should be included in this discussion. This 
is based more on an examinee’s behavior than in knowledge typology. 
It is defined as the capability of the examinees to discern some but 
not all of the distractors in a question (Betts et al. 2009). This reduces 
the remaining choices of the question and, in a scenario of guessing, 
the probability of answering correctly increases significantly, with no 
alterations in the sanction value by guessing. Considering that sanction 
established in a Negative Marking method is fixed with the equation 
(1), which considers a k number of answers, the expected value in the 
final score (the estimated knowledge) would be higher than the real 
knowledge of the examinee (Budescu and Bar-Hillel 1993).

Other parameters influence the reliability of this evaluation method. 
Specifically, the test length or the number of questions considered in 
the test. To ensure the validity of equation (1), the test length must be 
great enough to ensure a minimal scattering in the correlation between 
the estimated and real knowledge. The value of the penalty is based 

 

 𝑝𝑝 = 1
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on probability theory and, in consequence, needs enough random 
items to work properly. But a sufficient number of random items is not 
proportional to the number of questions, because an examinee with 
greater knowledge answers few questions by guessing compared to a 
lower-knowledge examinee. The expected value established by the 
penalty is easily obtained for lower-knowledge scenarios and extremely 
difficult in higher-knowledge scenarios. This implies that the knowledge 
level of an examinee influences the validity of equation (1) or the 
reliability of tests that use the Negative Marking scoring method.

For the moment, it has been suggested that an individual, at the 
moment when he/she does not know the correct answer for a question, 
tries to respond by guessing. But analyzing the individual’s behavior, 
this assertion would be inappropriate. In reality, it is more complex, 
and this is where a new parameter comes in: the level of cautiousness 
of each examinee (Espinosa and Gardeazabal 2010; Riener and Wagner 
2017). The sanction in the Negative Marking was used to remove or avoid 
guessing, but not all examinees can be said to have the same degree of 
bold or cautious behavior (Moon, Keehner, and Katz 2020). In addition, 
this influence depends on the personality of each individual, and over-
cautiousness is a variable independent of real knowledge (Hammond et 
al. 1998). In Negative Marking, an over-cautiousness examinee is more 
greatly influenced by the threat of a sanction than bold examinees. The 
number of unmarked questions is higher in cautious individuals, and 
the number of questions answered by guessing is higher in more daring 
individuals. Therefore, two examinees with different levels of cautiousness 
but with similar levels of real knowledge would show different test scores 
and estimated knowledge. In addition, the bolder examinees make the 
most of partial knowledge to improve their final score, because the 
probability of selecting the right answer is higher than the probability 
used to calculate the penalty. The over-cautious examinees only answer 
the question when they know the correct option, so they never make the 
most of those opportunities to improve their final score.

In this investigation, four scoring methods have been used: the 
preceding two methods, the Number Right and the Negative Marking, 
the “Free Choice” method (Jennings and Bush 2006) and the “Elimination 
Procedure” method (Bush 2015). The Free Choice method can be 
distinguished by allowing a selection of multiple answers. The motivation 
for the implementation of this rule is based on the rewarding of the 
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examinees’ partial knowledge. For example, in a four-choices test, this 
scoring system would work as follows: If the right answer is marked, the 
examinee is rewarded with one point (3/3); if the examinee marks the 
right one and one distractor, he/she is rewarded with (3-1)/3 = 0.67 points; 
finally, if three items are selected (the right one and two distractors) 
the reward is equal to (3-2)/3 = 0.33 points. When the examinee does 
not select the right answer, he/she is punished with: -0.33 points (one 
distractor selected), -0.67 points (two distractors selected), and -1 point 
(three distractors selected). There is an alternative method, similar to the 
‘Free-Choice’ test, called the ‘Dual Response’ system (Akeroyd 1982). In 
this scoring method, multiple-answers selection is also allowed, but the 
rewarding system changes: one point if only the right answer is selected, 
0.5 points for selecting the right one and one distractor, 0.25 points for 
the right one and two distractors and no points or penalties for other 
selections. The Elimination Procedure scoring method is similar to the 
Free-Choice method in the sense that multiple answers can be selected 
in the same question, but, in this “elimination procedure”, the examinee 
has to select the distractors instead of the right answer.

This introduction shows the underlying complexity of the analysis of 
each scoring method, mostly in the empirical studies where variables like 
cautiousness, erroneous knowledge or partial knowledge influence the 
final score, and it is not possible to discern their existence or to quantify 
their relative weight. Analytical studies using the probability theory as 
an alternative could become complex if the analysis considers all the 
variables introduced previously. That is the reason why this investigation 
reflected on the possibility of using the potentiality of computer 
algorithms. The main objective was the design of a code to generate 
hypothetical examinees characterized by different input parameters (real 
knowledge, erroneous knowledge and level of cautiousness). Combining 
this database of hypothetical examinees with different test designs, 
the algorithm would give, as an output, the final score or estimated 
knowledge for each examinee. This system would make it possible to 
interpret parameters that are difficult or impossible to analyze using 
empirical research, since cautiousness influences the final score.
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Methodology

The main objective of this investigation was the development of an 
algorithm to simulate the filling in of a multiple-choice test. Python was 
the programming language selected to develop the code because of its 
simplicity, capability, readability and extensive libraries with built-in 
modules.

Figure I shows a basic flowchart of the algorithm. There are three 
main blocks: the examinees, the test and the results. Examinees and tests 
have different input parameters that define their properties. The results 
block is related to the output data obtained by the algorithm. Each one 
of these input and output parameters is defined in the following sections.

FIGURE I. Basic flowchart of the algorithm

Examinees properties

This algorithm measures a hypothetical ‘Subject Knowledge’ introduced 
by the test, where each examinee has assimilated a specific percentage 
of that Subject Knowledge (called ‘Real Knowledge’ of the examinee). 
Figure II shows a schematic view of the Subject Knowledge (blue 
rectangle) which is classified as ‘Real Knowledge’ (the knowledge 
assimilated by each examinee) seen as the green rectangle and the rest 
of the Subject Knowledge, called ‘Lack of Knowledge’. Figure II also 
shows the classification established for this Lack of Knowledge, in which 
there is ‘Unknown Knowledge’ and ‘Erroneous Knowledge’. Unknown 
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Knowledge is the Subject Knowledge that the examinee has not retained, 
and Erroneous Knowledge is the percentage of the Lack of Knowledge 
that has been misunderstood. Figure III shows an examinee’s knowledge 
classification using an example of managing addition equations. The 
Real Knowledge would be related to the correct equations (the examinee 
knows how to manage some specific addition equations). The Unknown 
Knowledge would be related to the equations that the examinee does 
not know how to calculate. Finally, the Erroneous Knowledge would be 
related to the equations that the examinee believes he/she knows but are 
actually wrong (misunderstood knowledge).

FIGURE II. Classification of the Subject Knowledge

FIGURE III. Example of the interpretation of the knowledge classification
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Another property for each examinee introduced in the input parameters 
of the algorithm was the Level of Cautiousness. It measures the examinee’s 
capability to take a risk and try to guess a test question that he/she does 
not know the right answer to. However, it is important to clarify that the 
probability of taking a risk does not only depend on the examinee’s level 
of cautiousness. The probability of guessing also influences the probability 
of taking a risk. Figure IV shows a schematic example of two four-choice 
questions. In these examples, the first answer option is the right answer 
or key answer, and the rest of the answer options are the distractors. For 
the first case in Figure IV (UK,UK,UK,K), the examinee would not know 
the right answer (identified with UK), would not know two distractors 
(also identified with UK) and only would know (identified with K) the 
falsity of the last distractor. Thus, the probability of guessing would be 
equal to p

g
=1/3. If the examinee knew two distractors, not knowing one 

distractor and the right answer, the probability of guessing would grow 
to p

g
=1/2. The graph included in Figure IV shows that an increment in 

the probability of guessing increases the probability of taking a risk. 
Thus, there is a linear relationship between the probability of guessing 
and the probability of taking a risk. In addition, there are as many linear 
relations as levels of cautiousness defined. The methodology followed in 
the algorithm to simulate these curves is included in the Annex.

FIGURE IV. Dependency of the probability of taking a risk on the level of cautiousness and the 
probability of guessing.
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Test properties

Three test properties must be introduced in the algorithm as input 
parameters: the length of the test, the number of answers per question 
and the scoring method. The length of the test measures the number of 
questions evaluated in the test. The number of answers per question is 
related to the number of distractors associated with the right answer. 
Finally, the scoring method (Number Right, Negative Marking, Free-
Choice and Dual Response) is the method used to rate each question. 
All of them are explained in the introduction of this investigation. For 
the Negative Marking and Free-Choice methods, the penalty value would 
also be an input parameter of the test.

Results output

The algorithm calculates the final score of the test for each examinee. 
Each final score, called ‘Estimated Knowledge’, is compared with the 
‘Real Knowledge’ of the examinee, obtaining the ‘Estimated Knowledge 
Mismatch’ (EKM), which is equal to the difference between the Estimated 
Knowledge and the Real Knowledge (see equation (2)).

	 (2)

where RK is the Real Knowledge and EK is the Estimated Knowledge.

The algorithm obtains an EKM for each examinee, and it also calculates 
the mean value µ

EKM
 and the standard deviation σ

EKM
 of the EKMs (see 

equation (3)).

	 (3)

where EKM is the Estimated Knowledge Mismatch and n is the number 
of evaluated examinees.

 

 𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐸𝐸𝐸𝐸 − 𝑅𝑅𝑅𝑅  

 
  

 

 𝜇𝜇𝐸𝐸𝐸𝐸𝐸𝐸 =
∑ 𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖
𝑛𝑛
𝑖𝑖=1

𝑛𝑛  𝜎𝜎𝐸𝐸𝐸𝐸𝐸𝐸 = √∑ [𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 − 𝜇𝜇𝐸𝐸𝐸𝐸𝐸𝐸]2𝑛𝑛
𝑖𝑖=1

𝑛𝑛   
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Simulation of the examinee/questions interaction 

The algorithm uses the Monte Carlo method to generate the interaction 
between the examinees and the test questions. Figure V shows how the 
algorithm applies this statistical method. A random function is launched 
for each answer option of a test question. The random value obtained by 
this random function (represented as a white cross in Figure V) can fall 
in the region of the Real Knowledge, the Unknown Knowledge or the 
Erroneous Knowledge of the examinee. If the Real Knowledge is high 
enough, the random value will easily fall on it. Thus, if the examinee 
has a high Real Knowledge, he/she will generally know the veracity or 
falsity of the answer options. In the example represented in Figure V, 
an examinee with a Real Knowledge of 70%, Unknown Knowledge of 
20% and Erroneous Knowledge of 10% is represented with blocks. Each 
block has a corresponding area to its assigned percentage. As mentioned 
previously, each cross would be a random value and, for the specific 
case of the algorithm analyzed in this investigation, every cross would 
be one attempt to discern if the examinee does or does not know an 
answer option for a question. If the attempt falls in the Real Knowledge 
block, the examinee will know (answer ticked as K) the veracity or falsity 
of this answer option. If the attempt falls in the Unknown Knowledge 
block, the examinee will not know (answer ticked as UK) the veracity or 
falsity of this answer option. Finally, if the attempt falls in the Erroneous 
Knowledge block, the examinee will confuse a distractor as a right 
answer and vice versa (answer ticked as EK). Figure V shows that a great 
quantity of questions in a test (equivalent to a high number of answer 
options) reduces the difference between the percentages of the different 
types of knowledge of the examinee and the estimated percentages using 
the Monte Carlo method.
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FIGURE V. Monte Carlo method applied in the analysis of the answer options

When the random function is launched for all the answer options of a 
four-choice question, the algorithm obtains an identifier like (A

1
,A

2
,A

3
,A

4
), 

where each A
i
 represents one answer option (A

1
 corresponds to the right 

answer while A
2
 to A

4
 are the distractors). In each position, the result 

of using the Monte Carlo method is indicated (K: known answer, UK: 
unknown answer and EK: erroneously known answer). An example 
would be (K,UK,UK,UK) where the right answer is known, and all the 
distractors unknown. In this case, the examinee would tick the correct 
answer and would receive one point for that question. Another interesting 
example would be (UK,K,K,EK). In this case, the examinee does not 
know the right answer, knows two distractors and the third distractor 
is erroneously known. It means that the examinee would believe that 
the third distractor is the right answer. Thus, the examinee would tick 
the third distractor, wrongly answering the question. Another possibility 
could be (UK,UK,UK,K). It means that the examinee only knows one 
distractor, not knowing the rest of the answer options, so the examinee 
could answer the question by guessing. For all the questions in this 
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situation, the Monte Carlo method would be again launched but using 
the probability of taking a risk (p

r
) by the examinee. This probability 

p
r
 is dependent on the level of cautiousness of the examinee and the 

probability of guessing p
g
. The first one is a property of the examinee, 

and the second one is calculated as p
g
 = 1/x, where x represents the 

number of answer options not known in the question. Figure VI shows 
how the probability of guessing and the probability of taking a risk (p

r
) 

are calculated for the specific case (UK,UK,UK,K). The equation of the 
cautiousness curves represented in Figure VI is included in the Annex.

FIGURE VI. Calculation of the probability of taking a risk

Figure VII represents the application of the Monte Carlo method 
figure out if the examinee does or does not try to guess the right answer 
to the question and, if the examinee tries, the Monte Carlo method is 
again applied to perform a random attempt based on the probability of 
guessing p

g
 to know if the examinee does or does not guess the right 

answer.
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FIGURE VII. Monte Carlo method applied in the analysis of guessing.

Therefore, for a four-choice question, there are 34 = 81 possible 
combinations of K, UK and EK cases, that is to say a variation of three 
possibly repeated elements for 4 items per question. Figure VIII shows 
the examinee behavior for all 81 cases of a four-choice test. For all of the 
cases in which the examinee had doubts about more than one answer 
option, the previously explained Monte Carlo method is launched to 
know if the examinee ticked any answer and, in that case, if the examinee 
guessed the right answer or not.
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FIGURE VIII. Classification of the 81 possibilities in a four-choice question
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Rating assignation process

The algorithm uses four scoring methods: Number Right, Negative 
Marking, Free-Choice and Dual Response. The process followed by the 
algorithm to apply each scoring method was previously explained in the 
Introduction. This process employs the results obtained using the Monte 
Carlo method. The total or final score obtained in the test is calculated 
as the sum of all the correctly-answered questions and the difference of 
all the incorrectly-answered questions (if the scoring method has any 
criteria for penalties).

Case for validation and systematic analysis

The algorithm was validated by means of a comparison with an analytical 
model of a simple case using the probability theory. After that, the code 
was used to analyze the influence of each variable in the mean value 
of the EKMs. This systematic analysis considered 720 cases with the 
following selection of input variables (all of the questions selected were 
of the four-choice test type):

■ � The number of examinees: 1000.
■ � Length of the test: 10, 20, 30, 40, 70 and 100 questions.
■ � Real knowledge: low (1), mid-level (2) and high (3).
■ � Level of cautiousness: low (1), mid-level (2) and high (3).
■ � Erroneous knowledge: none (1), low (2), mid-level (3) and high (4).
■ � Scoring method: Number Right (NR), Negative Marking (NM), Free 

Choice (FC) and Dual Response (DR).

For Real Knowledge, a low level means that the examinees have a Real 
Knowledge somewhere between 0% and 33% of the Subject Knowledge. 
The mid-level would be a Real Knowledge from 33% to 66%, and a high 
level from 66% to 100%. For the Erroneous knowledge, a low level would 
mean a range of 0 to 33% of the Lack of Knowledge, the mid-level a 
range of 33% to 66%, and the high level a range of 66% to 100%. A level 
of ‘none’ would mean that the examinees have no Erroneous Knowledge. 
For the Level of Cautiousness, a low level means that the examinees have 
a level of cautiousness C between 0 and 0.33. The mid-level would be a 
C between 0.33 and 0.66, and the high level would be a C between 0.66 
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and 1.0. How this C value is used to calculate the probability of taking a 
risk is explained in the Annex.

Each case was identified with the ID xx-RKx-Cx-xx-EKx. As an 
example, ID 10-RK1-C1-NR-EK1 represents a test with 10 questions, a 
low Real Knowledge and low level of cautiousness for the examinees, 
Number Right scoring method and with no erroneous knowledge.

Results

Case for validation

Before using the algorithm, a simple case that could be analyzed with the 
probability theory was used to verify the code. Comparing both models, 
the analytical one and that obtained using the algorithm, the code was 
verified. The input parameters for this case were:

■ � The number of examinees: 1000.
■ � Length of the test: 200 questions.
■ � Real knowledge: set to 50% for all the examinees.
■ � Level of cautiousness: not applicable (a Number Right scoring 

method was used, so the absence of penalties eliminates any sense 
of danger).

■ � Erroneous knowledge: none.
■ � Scoring method: Number Right.

The design of this analytical probability model and the steps followed 
to calculate the corresponding probability distribution equation are 
detailed in the Annex. The following equation (4) shows this complex 
equation. The case for validation analyzed in this investigation used the 
simplest scoring method (Number Right method) without any erroneous 
knowledge and no influence of the cautiousness of the examinee. The 
exponential complexity of the probability model when these input 
variables are included in the analysis clearly shows the interest and 
usefulness of an algorithm to simplify and automate this probability 
calculation.
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	 (4)

where x+y+z+[100-(i+j+k)] must always be equal to s.
The following Figure IX shows a graph of the probability of obtaining 

the different Estimated Knowledge Mismatches (EKMs) for equation (4) 
(red curve). The EKM was calculated based on a maximum knowledge of 
10. The blue bar chart represents the results registered using the algorithm, 
in which the examinees are distributed by their different deduced values 
of EKM. A comparison between the probability distribution obtained 
analytically with the equation (4) and the one obtained using the code 
developed in this investigation could conclude that the algorithm showed 
sufficient agreement with the analytical model.

FIGURE IX. Comparison between the analytical model and the result obtained using the 
algorithm
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Systematic analysis with the algorithm

As explained in the Methodology section, 720 cases were launched 
using the algorithm to analyze the influence of each input parameter 
in the estimated knowledge or final score of a multiple-choice test. One 
thousand hypothetical examinees were evaluated in each case, obtaining 
the mean values of the difference between the estimated knowledge 
and the real knowledge (mean value of the EKMs) and the standard 
deviations of these mean values. The following Figure X shows the mean 
value of the EKMs on the left and the standard deviation on the right, 
both out of maximum knowledge of 10, versus the number of questions 
of the tests for the Number Right scoring method. Different levels of 
Real Knowledge were represented: a blue continuous line for low Real 
Knowledge (RK1); a red dotted line for mid-level Real Knowledge (RK2); 
and a dashed line with dots for high Real Knowledge (RK3). From top to 
bottom, different levels of Erroneous Knowledge are represented: none 
(EK1), low (EK2), mid-level (EK3), and high (EK4).
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FIGURE X. Mean value (1) and standard deviation (2) of the EKM for: (a) none, (b) low, 
(c) mid-level and (d) high Erroneous Knowledge, using the Number Right method
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The increment in the number of questions in the test did not affect 
the mean value of the EKM. Nevertheless, the standard deviation was 
reduced to an asymptotic value. The Erroneous Knowledge significantly 
affected the mean values of the EKM, reducing them with the increment 
of the Erroneous Knowledge.

Figure XI(a) shows the envelope for the Number Right scoring method 
deduced from the results obtained in Figure X. For the cases where the 
rest of the scoring methods were used, Figures XI(b), XI(c) and XI(d) 
show their envelopes for the three levels of cautiousness. Negative 
Marking and Dual Response methods showed a reduction in the upper 
limit of the envelope when the level of cautiousness of the examinees 
was increased. The lower limit showed no alteration due to the variation 
of this input parameter. In the specific case of the Free-Choice method, 
the upper limit of the envelope showed an increment with the increment 
of the level of cautiousness.
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FIGURE XI. Envelope of the EKM for the (a) Number Right, (b) Negative Marking, (c) Free-
Choice and (d) Dual Response scoring methods

Figure XII shows a comparison of the envelopes for all the scoring 
methods, where the lowest deviation was shown using the Dual Response 
method. The Negative Marking method showed a high level of penalties 
with a noteworthy underestimated knowledge followed by the Free-
Choice method, which showed the highest deviation in the estimation of 
the examinees’ knowledge.
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FIGURE XII. Comparison of the envelopes of the EKM for all the scoring methods

Discussion and conclusions

In the previous systematic analysis, the influence of the input parameters 
in the estimated knowledge obtained using multiple-choice tests 
was analyzed. An increment in the number of questions reduced the 
deviation of the knowledge overestimation or underestimation. This is 
logical from a probabilistic point of view. The Number Right method, 
generally considered to be a scoring method that overestimates the Real 
Knowledge of the examinee, shows underestimations of this knowledge 
when Erroneous Knowledge is strongly present. The Erroneous 
Knowledge significantly reduced the mean of the EKM in all the scoring 
methods. Thus, this knowledge property considerably affects the 
reliability of the scoring methods. Specifically, the deviations showed by 
Negative Marking and Free-Choice methods substantially increase with 
the presence of Erroneous Knowledge. The level of cautiousness of the 
examinees influences the upper limit of the envelope of the EKM with 
a maximum influence of one point over 10. Only the Negative Marking 
method showed lower knowledge overestimation rates (upper limit of 
the envelope), but at the cost of an extremely critical lower limit of 
knowledge underestimation.

To analyze in detail the influence of Erroneous Knowledge in the 
scoring methods, Table 1 shows the mean value of the EKM and the 
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standard deviation of this mean value, both out of a maximum knowledge 
of 10, for all the scoring methods evaluated in this investigation. In the left 
column of the table, values were obtained by calculating 1000 examinees 
with input parameters (level of cautiousness, Erroneous Knowledge and 
Real Knowledge) established at random. In the right column of the table, 
the same number of examinees were evaluated with randomly selected 
input parameters but fixing the Erroneous Knowledge to ‘none’.

TABLE I. Influence of Erroneous Knowledge in the estimated knowledge and the EKM

Scoring method
Random Erroneous 

Knowledge
Without Erroneous 

Knowledge

µEKM σEKM µEKM σEKM

Number Right -0,33 1,35 1,97 0,98

Negative Marking -2,21 1,77 0,75 0,94

Free Choice -1,58 2,09 1,76 0,95

Dual Response -0,41 1,32 1,81 0,83

It can be observed that the mean values of EKM were positive for all the 
scoring methods when no Erroneous Knowledge was established. This 
means that all scoring methods would overestimate the real knowledge 
of the examinees. In particular, the overestimated mean value would be 
from lower than one point out of 10 for the Negative Marking, to nearly 
two points out of 10 in the case of Number Right. This tendency to 
overestimate is based on the existence of partial knowledge. This means 
that even the sanction of Negative Marking is unable to compensate for 
the points obtained from guessing. In the case of the standard deviation 
of the EKM, no major differences were observed between the scoring 
methods.

However, when the Erroneous Knowledge is present in the examinees, 
a significant alteration in the behavior of the scoring methods is seen, 
showing an underestimation of the Real Knowledge of the examinees. 
In the specific case of Negative Marking, this underestimation may be 
higher than two points out of 10. Considering that the presence of 
Erroneous Knowledge cannot be measured or controlled in an empirical 
case, the most reliable scoring method would be one that, for a random 
distribution of the parameters, shows a practically null value of the EKM 
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mean and the lowest standard deviation for that coefficient. In this case, 
the scoring method that best complies with these objectives would be the 
Number Right method, closely followed by the Dual Response method.

It is important to point out that there are some tests used to certify 
personnel for industrial or maintenance techniques or internal medicine 
certification exams, where Erroneous Knowledge must be penalized, 
because it is more dangerous than Unknown Knowledge. That is why the 
Negative Marking scoring method would be, without a doubt, the most 
convenient method in cases that need detection and penalization of the 
presence of Erroneous Knowledge.

In conclusion, it can be noted that the development of an algorithm for 
the analysis of the reliability of the scoring methods of multiple-choice 
tests has provided interesting data about the strengths and weaknesses 
of each scoring method. The influence of different parameters that are 
impossible to analyze empirically has been studied using this novel 
algorithm, opening an interesting research field and showing the potential 
for using the Monte Carlo method and computer science.
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Annex

Influence of the level of cautiousness on the probability of taking a risk

The level of cautiousness is the characteristic of an examinee that 
measures his/her capability to take a risk when he/she has doubts about 
two or more answer options on a test question. This value, identified 
by C, has a range from 0 to 1. A null value means a bold examinee, 
and C=1 means an extremely cautious examinee. As mentioned in the 
Methodology section, the level of cautiousness controls the probability of 
taking a risk p

r
. This probability p

r
 controls if the examinee tries to guess 

the right answer or not. In addition, the examinee could have doubts 
about two, three or four answer options (in the specific case of a four-
choice question). This means that the probability of guessing p

g
, if the 

examinee decides to take a risk, can be lower or higher. This probability 
of guessing also affects the probability of taking a risk. Thus, p

r
 is a 

function dependent on two variables: the level of cautiousness C and the 
probability of guessing p

g
. To implement this behavior in the algorithm, 

the equation (A1) was designed to simulate it. Figure A-I shows this 
equation (A1). The motivation behind the use of this equation is based 
on searching for a specific behavior: the more likely it is to guess the 
right answer (high p

g
), the higher the probability of taking a risk (p

r
) 

for all levels of cautiousness. In addition, this equation (A1) showed a 
reduction of the probability of taking a risk with an increasing level of 
cautiousness.

	 (A1)𝑝𝑝𝑟𝑟 = (1 − 𝐶𝐶)(0,5 + 𝑝𝑝𝑔𝑔)  
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FIGURE A-I. Probability of takinbg a risk vs. the probability of guessing and level of cautiousness 
(C) of the examinee

Analytical probability model for the case for validation

The input parameters for this case for validation were:

■ � The number of examinees: 1000.
■ � Length of the test: 200 questions.
■ � Real knowledge: fixed to 50% for all the examinees.
■ � Level of cautiousness: not applicable (a Number Right scoring 

method was used, so the absence of penalties eliminates any sense 
of danger).

■ � Erroneous knowledge: none.
■ � Scoring method: Number Right.

The four answer options for each question could be only considered 
as known (K) or unknown (UK), because an erroneously known 
answer is not possible, because the Erroneous Knowledge has been 
established previously as ‘none’ (EK = 0). Figure A-II shows the 16 
possible scenarios in a four-choice question. Each possible combination 
for a question is marked with a dashed rectangle, and each answer 
option is established as known (K) or unknown (UK). In this figure, 
the first answer option is correct and the other three are the distractors. 
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The probability of knowing the veracity or falsity of an answer option 
is equal to 0.5 because the Real Knowledge of the examinees is fixed 
to 50%. Figure A-II groups the 16 possibilities into three cases: the 
red group, which gathers together all of the possibilities that are 
derived from a known question; the blue rectangle, which shows the 
possibilities with one distractor and the right answer are not known; 
the green rectangle, which shows the possibilities with two distractors 
and the right answer are not known; and, finally, the purple rectangle, 
which shows the single possibility with three distractors and the right 
answer are not known. Blue, green and purple groups are the questions 
not known, because the examinee could not deduce without guessing 
the right answer. The probability of being in green or blue cases would 
be p=3/16 for each case. In the purple case, this probability would be 
p=1/16, and finally, the probability of an examinee’s knowing the right 
answer would be p=9/16.

FIGURE A-II. Possibilities in a four-choice question (K: known answer; UK: unknown answer)

The questions not known are the cases where guessing could be 
applied by the examinee. This probability of guessing is equal to p

g
=1/2 

in the blue cases, p
g
=1/3 in the green cases and p

g
=1/4 in the purple case.

The probability distribution generally used for several x successes in 
a sequence of n independent experiments is the binomial probability 
distribution (BP distribution; see equation (A2)). For example, in a test of 
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200 questions, the BP for obtaining 100 questions in the blue case would 
be B(200,100,3/16) = 1.74 x 10-23.

	 (A2)

If it is assumed that there are 100 blue cases in a test of 200 questions, 
the probability of correctly guessing 50 questions out of these 100 blue 
cases would be B(100,50,1/2) = 0.079.

The probability of having 100 questions in the blue case and to correctly 
guess 50 out of these 100 questions would be the intersection of the 
previously obtained probabilities: P = B(200,100,3/16) x B(100,50,1/2). 
The analyzed case could be more specific, analyzing all the 200 test 
questions. For example, the equation (A3) shows the probability of 
having 30 blue cases with 10 correctly guessed questions, 20 green cases 
with 7 correctly guessed questions, 10 purple cases with 1 correctly 
guessed question, with the rest of questions known by the examinee 
(140 questions):

	 (A3)

where S is the extra score obtained by the examinee. This extra score 
is calculated as the obtained score in the test (addition of 140 known 
questions and 10+7+1 correctly guessed questions) minus the score that 
would represent the Real Knowledge of the examinee (RK·n = 0.5 x 200). 
Thus, S = 140+10+7+1−0.5x200 = 58 extra points.

This is not the probability of obtaining 58 extra points, because there 
are many other probability combinations for obtaining those 58 extra 
points. Another option could be the probability of having 20 blue cases 
with 5 correctly guessed questions, 20 green cases with 2 correctly 
guessed questions, 12 purple cases with 3 correctly guessed questions 
and the rest of questions known by the examinee (148 questions). 
Equation (A4) shows the calculation of this probability, where the extra 
score would also be S = 148+5+2+3−0.5x200 = 58 extra points.

 𝐵𝐵(𝑛𝑛, 𝑥𝑥, 𝑝𝑝) = (𝑛𝑛𝑥𝑥) 𝑝𝑝
𝑥𝑥(1 − 𝑝𝑝)𝑛𝑛−𝑥𝑥  

 

  

 

𝑃𝑃(𝑆𝑆 = 58) = {𝐵𝐵(200,30,3/16) ∙ 𝐵𝐵(30,10,1/2) × 
× [𝐵𝐵(200,20,3/16) ∙ 𝐵𝐵(20,7,1/3)] × [𝐵𝐵(200,10,1/16) ∙ 𝐵𝐵(10,1,1/4)]}  
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	 (A4)

The sum of all the probability combinations that have S = 58, would 
give the probability of obtaining an extra score of S = 58 for a test with 
200 questions. Equation (A5) shows the calculation of this probability 
P(S=58).

	 (A5)

where x+y+z+[100-(i+j+k)] must always be equal to 58.
The most generic case would be the consideration of S = s extra score. 

The equation (A6) represents this scenario.

	 (A6)

where x+y+z+[100-(i+j+k)] must always be equal to s.

 

𝑃𝑃(𝑆𝑆 = 58) = {[𝐵𝐵(200,20,3/16) ∙ 𝐵𝐵(20,5,1/2)] × 
× [𝐵𝐵(200,20,3/16) ∙ 𝐵𝐵(20,2,1/3)] × [𝐵𝐵(200,12,1/16) ∙ 𝐵𝐵(12,3,1/4)]}  

 
  

 

𝑃𝑃(𝑆𝑆 = 58) = ∑∑ ∑ ∑ ∑ ∑{𝐵𝐵(200, 𝑖𝑖, 3/16) ∙ 𝐵𝐵(𝑖𝑖, 𝑥𝑥, 1/2) ×
𝑘𝑘

𝑧𝑧=0

200−𝑗𝑗−𝑖𝑖

𝑘𝑘=0

𝑗𝑗

𝑦𝑦=0

200−𝑖𝑖

𝑗𝑗=0

𝑖𝑖

𝑥𝑥=0

200

𝑖𝑖=0
 

× [𝐵𝐵(200, 𝑗𝑗, 3/16) ∙ 𝐵𝐵(𝑗𝑗, 𝑦𝑦, 1/3)] × [𝐵𝐵(200, 𝑘𝑘, 1/16) ∙ 𝐵𝐵(𝑘𝑘, 𝑧𝑧, 1/4)]} 
 

 

  

𝑃𝑃(𝑆𝑆 = 𝑠𝑠) =∑∑ ∑ ∑ ∑ ∑{𝐵𝐵(200, 𝑖𝑖, 3/16) ∙ 𝐵𝐵(𝑖𝑖, 𝑥𝑥, 1/2) ×
𝑘𝑘

𝑧𝑧=0

200−𝑗𝑗−𝑖𝑖

𝑘𝑘=0

𝑗𝑗

𝑦𝑦=0

200−𝑖𝑖

𝑗𝑗=0

𝑖𝑖

𝑥𝑥=0

200

𝑖𝑖=0
 

× [𝐵𝐵(200, 𝑗𝑗, 3/16) ∙ 𝐵𝐵(𝑗𝑗, 𝑦𝑦, 1/3)] × [𝐵𝐵(200, 𝑘𝑘, 1/16) ∙ 𝐵𝐵(𝑘𝑘, 𝑧𝑧, 1/4)]} 
 

 

 

 

 

  




